盡管為通用照明應用而設計的基本LED驅動(dòng)器相對簡(jiǎn)單,但是當需要切相調光(phase cut dimming)和功率因數校正等附加功能時(shí),這種設計就將會(huì )變得非常復雜。不帶功率因數校正功能的非調光LED驅動(dòng)器一般包括一個(gè)離線(xiàn)開(kāi)關(guān)電源,用其進(jìn)行調節以實(shí)現恒流輸出。這與標準離線(xiàn)開(kāi)關(guān)電源和在A(yíng)C-DC適配器中通用的型號并無(wú)太大差異。這種設計可以采用標準的SMPS(開(kāi)關(guān)電源)電路拓樸,如降壓、升壓或反激式轉換器等。
2009年12月3日,美國能源局(DOE)為一體化LED燈項目發(fā)布了“能源之星”規格的最終版,規定在美國應用的LED驅動(dòng)器的功率因數必須優(yōu)于0.7,而工業(yè)應用則預計要優(yōu)于0.9。目前市場(chǎng)的許多產(chǎn)品尚不能滿(mǎn)足這樣的要求,因此未來(lái)需要用更先進(jìn)的產(chǎn)品來(lái)進(jìn)行替代。有兩種方式可以實(shí)現功率因數校正(PFC),每種都要求在電源轉換器的前端增加一些附加電路:簡(jiǎn)單的低成本無(wú)源PFC,以及更復雜的有源PFC。
在更深入研究這些方法之前,需要強調的一點(diǎn)是為了獲得“能源之星”評級, LED驅動(dòng)必須是可調光的。
一般而言,這就意味著(zhù)其可調性會(huì )源于現有的基于切相工作原理的墻式電子調光器,這一原理最初是用來(lái)設計純阻抗白熾燈。盡管其它調光方法,如線(xiàn)性0-10V調光或DALI也可能合乎要求,但是它們可能都僅限于高端工業(yè)類(lèi)LED驅動(dòng)器。到目前為止,切相調光器的應用相當廣泛,很顯然,能夠有效調光的LED燈將具有極大的優(yōu)勢。由于市場(chǎng)上還有許多基于三端雙向可控硅開(kāi)關(guān)的低成本調光器,因此保證LED驅動(dòng)器與所有類(lèi)別相兼容是不現實(shí)的,特別是許多調光器僅采用基本設計,性能十分有限;谶@樣的原因,“能源之星”項目?jì)H要求LED驅動(dòng)器廠(chǎng)商在一個(gè)網(wǎng)頁(yè)中詳細說(shuō)明哪些調光器可以與其產(chǎn)品相兼容。
在“能源之星” 規格中,值得注意的另外一個(gè)要求是LED的工作頻率必須大于150Hz,以消除出現可見(jiàn)閃爍的可能性。這就意味著(zhù)給LED供電的輸出電流中不能帶有任何大量的頻率是線(xiàn)性頻率(50Hz或60Hz)兩倍的紋波。
在如辦公室照明、公共建筑和街區照明等離線(xiàn)應用中,越來(lái)越多的應用中采用LED照明,并且在未來(lái)幾年里仍將保持這一趨勢。在這些應用中,大功率LED會(huì )取代線(xiàn)性或大功率CFL熒光燈、HID燈以及白熾燈。這些應用需要一個(gè)LED驅動(dòng)器,其典型功率范圍為25W至150W。在許多情況中,LED負載都由一個(gè)的高亮度白光LED陣列組成,通常采用多種形式的芯片封裝。用于驅動(dòng)這些負載的DC電流通常至少為1安培。實(shí)際也有AC電流驅動(dòng)的LED系統,但是一般認為DC系統可以為L(cháng)ED提供更理想的驅動(dòng)條件。
在LED照明設備中需要進(jìn)行電流隔離,以防止在可以接觸到的地方發(fā)生觸電危險,這種危險在大多數情況下都可能發(fā)生,除非采用一個(gè)絕緣的機械系統。這是由于與日光燈照明設備等不需要通過(guò)絕緣來(lái)實(shí)現安全性的產(chǎn)品不同,LED芯片需要與金屬散熱器連接。為了實(shí)現良好的熱傳導性,需要在LED芯片和散熱器之間形成熱障,這樣就無(wú)需通過(guò)添加絕緣材料來(lái)滿(mǎn)足絕緣要求。因此,在LED驅動(dòng)器內部形成絕緣就是最佳選擇,同時(shí)也說(shuō)明了電源轉換器拓樸技術(shù)是可行的。
兩種可能方案分別是反激式轉換器或包括一個(gè)PFC級的多級轉換器,然后是絕緣和降壓級,最后是后端電流調整級。兩種方案之中,反激式因其相對簡(jiǎn)易且成本較低,應用比較廣泛。
反激式轉換器為許多應用提供了良好的解決方案(圖1),然而,它卻具有如下的局限性:有限的功率因數校正能力;在寬輸入電壓范圍上效率有限;兩倍線(xiàn)頻(<150Hz))時(shí)的輸出紋波很難消除;需要通過(guò)附加電路進(jìn)行調光。

圖1:采用反激式轉換器的LED調光。
盡管多級設計(圖2)的額外成本限制了其在高端產(chǎn)品中的應用,但這種設計卻可以克服其中的一些問(wèn)題。在較寬的AC輸出電壓范圍內,其可以實(shí)現高功率因數和較低的總諧波失真(THD),從而使相同的LED驅動(dòng)器可以利用110V、120V、220V、240V或277V的主電源供電。

圖2:采用多級轉換器的LED調光。
能夠在很寬的范圍上保持高效率,而不是使效率在一個(gè)特定線(xiàn)負載點(diǎn)上達到峰值,但在不同的條件下卻又大幅下降。同時(shí),它也更易于降低150Hz下的紋波輸出,多級系統使其自身能夠更加高效的采用不同的調光方式。
本文其余部分將深入探討寬電壓輸入范圍、絕緣、可調光、穩壓DC輸出多級LED驅動(dòng)設計原則,主要針對25W至150W范圍的應用。該實(shí)例中的多級LED驅動(dòng)器將分為三個(gè)部分:前端,功率因數校正(PFC)部分;絕緣和步降部分;后端,電流調制部分。
前端部分包括一個(gè)升壓轉換器,配置采用一個(gè)功率因數校正做預調節,在輸出端提供一個(gè)高壓DC總線(xiàn),在電壓或負載的各種變化范圍上,將其穩定到一個(gè)固定的電壓。由于穩壓控制回路響應很慢,使得AC線(xiàn)頻率的許多周期都會(huì )受到負載變化的影響,它只吸收了一個(gè)基本的正弦線(xiàn)輸入電流。這個(gè)電路典型一般工作在臨界導通模式,否則就被認為是轉換模式。在這種模式中,PWM關(guān)斷周期和由此形成的開(kāi)關(guān)頻率是可變的,所以,當存儲在升壓電感器中的所有能量傳輸到輸出端時(shí),新的開(kāi)關(guān)周期才開(kāi)始。這種共振工作模式被廣泛應用,而且由于它的開(kāi)關(guān)損耗最小,從而實(shí)現了高效率。在指定的功率范圍內使用這種設計是最佳方式。
中間級將高壓DC總線(xiàn)電壓(典型值在475V左右)轉換成為適用于驅動(dòng)LED負載的低壓輸出;诎踩矫娴目紤],LED負載通常采用低壓驅動(dòng),因此驅動(dòng)電路通常最小值為1安培。這里所推薦的絕緣和降壓級配置是一種諧振半橋,包括一對用相互反相的信號驅動(dòng)開(kāi)關(guān)MOSFET。高頻降壓變壓器初級繞阻的一端接到這兩個(gè)開(kāi)關(guān)管的的中點(diǎn),而另一端與DC總線(xiàn)至地回路的電容分頻網(wǎng)絡(luò )相連接。通過(guò)這種方式,變壓器初級可以看到一個(gè)正負電壓振幅相等的方波。二次繞阻將采用中心抽頭,這樣兩個(gè)二極管整流器即可用于將輸出電流轉換到DC。其中輸出電流高到可以用MOSFET取代整流二極管,從而作為同步整流系統的方式運行。在采用3安培電流的典型應用中,在30度的環(huán)境溫度下,同步MOSFET的表面溫度比采用相同封裝的肖特基二極管的溫度更低。
我們可以看出,隨著(zhù)電流要求的增長(cháng),同步整流的熱優(yōu)勢就變得更為顯著(zhù)。最后,還需要一個(gè)平滑電容,以產(chǎn)生絕緣的低紋波DC電壓。這個(gè)電容的容值為數十法拉的級別,因此要采用陶瓷電容器。
為了使半橋級效率更高,在設計中,應該使其工作在諧振模式,其中MOSFET在零電壓(ZVS)條件下開(kāi)關(guān)。要實(shí)現這一點(diǎn)就必須保證一個(gè)MOSFET關(guān)斷而另一個(gè)MOSFET開(kāi)啟之間有一個(gè)短時(shí)延,并且在這段時(shí)延電壓從一個(gè)軌整流換向到另一條軌的中間點(diǎn)。這是因為電感器中能量的釋放并通過(guò)MOSFET中的體二極管進(jìn)行傳導。變壓器的初級設計中,有必要保持足夠的漏電感,從而可以存儲更多的能量,從而可以進(jìn)行能量交換。這樣,變壓器的設計就會(huì )變得更加復雜,而避免這些問(wèn)題的一個(gè)簡(jiǎn)單方法就是采用一個(gè)標準的高頻變壓器設計,無(wú)需為其設計增加額外的漏電感,僅僅需要增加一個(gè)與初級電感平行的另外一個(gè)電感來(lái)促進(jìn)能量交換。這個(gè)額外的電感也可以用于幫助基于三端雙向可控開(kāi)關(guān)的調光器進(jìn)行調光操作,并為調整提供了額外的成本和空間。我們還將對此做進(jìn)一步的探討。這樣的電感器可以采用開(kāi)氣隙磁芯或開(kāi)口磁芯來(lái)增加儲能。
LED驅動(dòng)器的后端級包括帶有短路保護功能的電流調制電路。這可以通過(guò)一個(gè)線(xiàn)性調制電路來(lái)實(shí)現,但僅采用這種方式還不夠,它只適用于低輸出電流,不可用于多級系統。備選方案是一個(gè)簡(jiǎn)單的降壓穩壓器電路,利用電流反饋來(lái)限制每個(gè)超過(guò)目標LED驅動(dòng)電流的輸出電流。這樣可以補償在溫度和器件容差帶來(lái)的總的LED正向電壓的變化,同時(shí)也限制了短路或其它故障情況下的電流,保護驅動(dòng)器不受損傷。
在多個(gè)輸出級都與由前一級供電的單獨的隔離DC電壓相連接時(shí),也可以采用多級通道的方式。因為在這樣的設計中,一個(gè)通道出現輸出短路不會(huì )妨礙其它通道的正常運行。而且,這還允許將幾個(gè)通道的調制電流提供給不同的LED陣列,并且省去了對于連接平行LED陣列的需要。眾所周知,如果LED不能在相近的溫度條件下有相似的正向壓降,那么并行連接LED將會(huì )出現問(wèn)題,這時(shí)采用帶有多個(gè)獨立輸出的驅動(dòng)器的優(yōu)勢就顯而易見(jiàn)了。
TRIAC調光器的缺點(diǎn)
現有的大多數調光器一般可采用前沿切相方式工作,采用一個(gè)非常簡(jiǎn)單的基于三端雙向可控硅開(kāi)關(guān)的電路。這些調光器最初設計只是與作為電阻負載的白熾燈一起使用。三端雙向可控硅開(kāi)關(guān)器件是一個(gè)半導體開(kāi)關(guān),它只有當給其第三個(gè)門(mén)極加脈沖使其觸發(fā)之后,其兩個(gè)主要端子之間可以任何一個(gè)方向傳導電流。這個(gè)脈沖可以具有任意一個(gè)極性,因此易于通過(guò)一個(gè)基本的RC計時(shí)電路進(jìn)行創(chuàng )建。其工作原理包括在A(yíng)C線(xiàn)周期的一個(gè)點(diǎn)上觸發(fā)三端雙向可控硅開(kāi)關(guān),這樣它將一直導通到周期的結束,周期結束時(shí)線(xiàn)性電壓降為零,接著(zhù)流經(jīng)三端雙向可控硅開(kāi)關(guān)電流也將為零,三端雙向可控硅開(kāi)關(guān)會(huì )再次關(guān)閉。三端雙向可控硅開(kāi)關(guān)器件具有最小的額定保持電流,低于這個(gè)電流,開(kāi)關(guān)將關(guān)閉。調節電路中的電位器控制調節器電路中三端雙向可控硅開(kāi)關(guān)的開(kāi)通點(diǎn),并且通過(guò)實(shí)現調光改變整體的平均AC電流。
然而,即使它們包括一個(gè)功率因數校正前端,LED轉換器和其它電源或電子鎮流器也不會(huì )成為調光器的純電阻負載。當調光水平被降低時(shí),調光器中的三端雙向可控硅開(kāi)關(guān)可能會(huì )不規律被激發(fā)或錯過(guò)開(kāi)關(guān)周期。影響這種性能的因素非常復雜,由于我們已經(jīng)找到了一個(gè)簡(jiǎn)單的解決方案,可以在多級系統中最大程度的克服這種問(wèn)題,因此在這里沒(méi)有必要進(jìn)行深入分析。
無(wú)需將降壓變壓器的初級側中的整流換向電感器返回到電容分壓器的中點(diǎn),電流即可以通過(guò)一個(gè)DC分隔電容器流回到線(xiàn)輸入。這就在A(yíng)C線(xiàn)循環(huán)結束前,提供了少量的額外電流,這些電流將使三端雙向可控硅開(kāi)關(guān)處于開(kāi)啟狀態(tài),并使其在所要求的調光范圍內運行。這一解決方案通過(guò)利用那些將被浪費的電流,通過(guò)基于三端雙向可控硅開(kāi)關(guān)的調光器幫助調光。(圖3)

圖3:前端和帶有調光電荷泵的半橋。
利用這種方式調光是切實(shí)可行的,因為隨著(zhù)調光級別的降低,前端級的輸出總線(xiàn)電壓也在降低。這就使得次級電壓也下降,由于LED負載有固定的總壓降,電壓中的一個(gè)微小變化也將引起電流以及光輸出的巨大變化。通過(guò)這種方式,實(shí)現了LED的線(xiàn)性調光,由此滿(mǎn)足了更為復雜的PWM調光電路的要求并避免了可能的專(zhuān)利侵權。盡管調光器兼容性需要損失一定的效率,但多級配置仍是更高性能LED驅動(dòng)器設計的絕佳選擇。 |